
 

 

  
Abstract—A spurious trip is one cause of an unexpected plant 

shutdown initiated by a safety-instrumented system (SIS). Therefore, 
spurious activation normally leads to lost production or low 
availability of the EUC. Some of the spurious activations can lead to 
a hazardous state and so the plant cost can be extremely increased. 
On these foundations the modeling of spurious activations in safety-
instruments systems (SIS) has been studied for over ten years and in 
different industry branches, for example: nuclear industry, offshore-
onshore industry, process industry, etc.…. In line with the important 
standard IEC 61508, SISs are generally classified into two types: 
low-demand systems and high-demand systems. This article focuses 
on the estimation of “spurious trip rate” (STR) and “mean time to 
failure spurious” (MTTFSpurious) for these two different system modes. 
The research is based on block diagrams and the Markov model and 
is exemplified by two system configurations: 1oo1 and 1oo2. 
 

Keywords—demand rate, MTTFSpurious, spurious trip rate, 1oo1, 
1oo2. 

I. INTRODUCTION 

AFETY-instrumented systems (SISs) are widely used in the 
process industry to respond to hazardous events and 

unwanted events. If a hazardous situation occurs within an 
EUC (Equipment Under Control) and is detected, a demand is 
sent to the safety system with a rate λDE. This demand serves 
to activate the safety function to achieve the EUC in safe state 
(Fig. 1). 

 
The demand rate is not defined in standard IEC 61508 [1], 

but defined in the standard prEN ISO 13849-1 (2004) [17] as a 
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frequency of demands for a safety-related action of a safety 
related part of a control system (SRP/CS). 

According to the important standard IEC 61508 [1], SISs 
are classified into two types: low-demand systems and high-
demand systems. A low-demand SIS has a frequency of 
demands not more than once per year and not more than twice 
the proof test frequency. Else, the SIS is considered as a high-
demand system. However, there are no further discussions 
about the distinction between low- and high-demand systems. 
There is only a discussion about the difference of the 
reliability evaluation between systems: Probability of Failure 
on Demand (PFD) for low-demand systems and Probability of 
Failure per Hour (PFH) for high-demand systems. 

The SIS can be regarded from one of two different 
perspectives: safety or availability. From the point of view of a 
safety perspective a SIS can be evaluated by some important 
safety parameters such as PFD, PFH, MTTF (Mean Time To 
Failure). And other parameters like STR, MTTFSpurious, PFS 
(Probability of Failure Safe) are commonly calculated for a 
SIS with availability perspective. Whereas the safety integrity 
levels (SIL) are defined in the standard IEC 61508 [1] to 
provide a measure of how often a function fails to operate 
when required (Table 1), spurious trip levels (STL) are defined 
in [5], [6] to measure how often a function is carried out when 
not required (Table 2). The more financial damage the 
spurious trip can cause, the higher the STL of the safety 
function should be. 
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Fig. 1 EUC and SIS [14], [15] 

TABLE I 
SAFETY INTEGRITY LEVEL [1] 

SIL PFDavg PFH 

1 ≥ 10−2 to <10−1 ≥ 10−4 to <10−5 
2 ≥ 10−3 to <10−2 ≥ 10−7 to <10−6 
3 ≥ 10−4 to <10−3 ≥ 10−8 to <10−7 
4 ≥ 10−5 to <10−4 ≥ 10−9 to <10−8 

 
TABLE II 

SPURIOUS TRIP LEVELTM [5], [6] 

STL 
Probability of Failure 

Safe Per Year 
Spurious Trip Cost 

X ≥ 10−(x+1) to <10−x … 
… … … 
5 ≥ 10−6 to <10−5 10M€ - 20M€ 
4 ≥ 10−5 to <10−4 5M€ - 10M€ 
3 ≥ 10−4 to <10−3 1M€ - 5M€ 
2 ≥ 10−3 to <10−2 500k€ - 1M€ 
1 ≥ 10−2 to <10−1 100k€ - 500k€ 
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The SIS reliability is analyzed by different methods, like 
reliability block diagrams [2], Markov models [3], 
approximation formulas [8], Monte Carlo simulation [20], etc. 
Most of the references focus on low-demand systems and do 
not take high-demand systems into consideration as well as the 
borderline between two SIS types. Some authors suggest to 
incorporate the rate of demands into the analysis by using the 
Markov model [11], [8], [12]. However, H. Jin, M.A 
Lundteigen and M. Rausand [10] listed some criterion in the 
quantification of the SIS reliability performance (PFD and 
PFH) and presented modeling issues for this quantification for 
both demand modes. Issues like demand rate, demand duration 
make the difference between low-demand and high-demand 
systems. The borderline between theses system modes is 
discussed and shown by the quantification of SIS reliability 
with Markov modeling [10], [13]. But this borderline has not 
been considered for the evaluation of a SIS from an 
availability perspective. STR and MTTFSpurious have been 
commonly calculated for a low-demand system. 

The main purpose of this article is to verify the difference 
between low-demand and high-demand systems for de-
energized to trip application by using the block diagram and 
the Markov method for the STR and MTTFSpurious calculation. 
This paper is organized as follows: section 2 discusses the 
definition and causes as well as the characteristics of spurious 
activation. In section 3 the differences between low-demand 
and high-demand systems are described. In the next sections, 
section 4 and 5, the evaluation of spurious trip rate and 
MTTFSpurious of these system modes is studied for 1oo1 and 
1oo2 systems. The analysis is based on block diagram and 
Markov model. In the section 6 the safety parameters like PFS, 
STR and MTTFSpurious of 1oo1- and 1oo2-architectures are 
calculated through an example. The results will be compared 
with results, which are derived from conventional methods. 
And finally, a discussion on the overall study is provided in 
Section 7. 

II. SPURIOUS TRIP 

A spurious trip is one cause of an unexpected plant 
shutdown initiated by a safety-instrumented system. Namely, if 
a safety loop component fails to function, the safety 
instrumented system is prompted to shut down that part of the 
plant’s operation. This is done because the failure of a 
particular safety loop can prevent the safety-instrumented 
system from functioning properly. It does not guarantee plant 
safety. Therefore, spurious activation normally leads to lost 
production or low availability of the EUC [9]. 

Industry data report that when a process unit experiences a 
high number of spurious alarms, the operators become 
ambivalent and are likely to respond slowly or not at all to a 
critical “real alarm” [7]. This means that spurious trip is not 
only expensive, but also in most cases can be considered as 
dangerous too. The standard IEC 61508 has no requirement 
related to spurious activations, while IEC 61511 requires that a 
maximum STR is specified, but the standard does not provide 

how the rate should be estimated [1], [4] and [9]. 

A. Spurious Trip Rate 

The spurious trip rate or also known as “false trip rate” is 
defined in [3]: “the term spurious trip rate (STR) refers to the 
rate at which a nuisance or spurious trip might occur in the 
SIS”. The unit of STR is 1/h and describes how available a 
component or a system is. The availability is higher if the STR 
is smaller. 

To estimate the STR, the oil and gas industry often use the 
formulas presented in [3] and [8]. When comparing these 
formulas, it becomes evident that there is no unique 
interpretation of the concept of spurious trip. Whereas the PDS 
method [8] defines a spurious trip as “a spurious activation of 
a single SIS element or of a SIF”, ANSI/ISA-TR84.00.02-
2002 [3] refers to a spurious trip as a “non-intended process 
shutdown”. As a result, the concept of spurious trip is rather 
confusing and it is difficult to compare the STR in different 
applications [9]. STR formulas of some conventional methods 
are presented in the following table: 

 

B. Probability of Spurious Trip 

Probability of Failure Spurious (PFS) is the probability of 
failure due to the spurious trip. The smaller this value, the 
more available the system is. For the evaluation and 
comparison of systems, the average PFSavg is calculated as 
followed: 
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with RSpurious(t) is calculated by the following equation: 
 

dtSTR
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C. Mean Time To Failure Spurious 

Mean Time to Failure Spurious is abbreviated as 
MTTFSpurious and is the estimated time between spurious 
failures of a component or a system [3]. To estimate the 
MTTFSpurious value, ISA [3] introduces three methods: 
simplified equation, fault tree analysis and the Markov model. 
MTTFSpurious is proportional to the availability. This means that 
a component or a system is more available if the MTTFSpurious 
value is higher. The following equation presents the 
calculation of MTTFSpurious by simplified equation: 

 

∫
∞

⋅=
0

)( dttRMTTF SpuriousSpurious
 (3) 

 

III. L OW DEMAND AND HIGH DEMAND SYSTEM 

A SIS has to achieve or maintain a safe state for the system 
the SIS is protecting with respect to a specific process demand. 
Safe state can be defined differently for each system. In some 
cases, the safe state is to maintain before the demand occurs, 
whereas in other cases, it means to stop the EUC. Typical low-
demand systems are emergency shutdown systems (ESD), 
process shutdown systems (PSD) or airbag systems in 
automobiles. And the typical high-demand systems are railway 
signal systems, safety-related electrical control systems for 
machinery. One of the important aspects of SIS with low-
demand is that the EUC remains in the safe state after the SIS 
has responded to a demand. And for a SIS with high-demand 
the EUC will be returned to the normal operating state after the 
demand [10]. For example, a railway signaling system is 
always ready to respond to a new request when the previous 
train has left the rail section [10]. 

Another difference between low-demand and high-demand 
systems is the functional testing. For a low-demand SIS, it is 
important to perform functional testing to detect DU-failure 
(dangerous undetected) but it is not always required for high-
demand. Due to the fact that the demand rate is high it may not 
be possible to use functional testing to detect and repair DU-
failures before the next demand. However, it is important to 
perform regular testing for high-demand systems to prevent the 
operating of SIS with reduced fault tolerance [10]. 

The diagnostic testing is an automatic self-test that is 
implemented in SIS to reveal failure without an interruption of 
the EUC and it is frequent. It can take place every few 
seconds, minutes or hours. This test should be carefully 
considered for the both systems. This means, for low-demand 
systems, there is usually enough time to repair and restore the 
function until the next demand appears. But for high-demand 
systems, the demand rate and the diagnostic test frequency 

may be the same [10]. 
The demand rate varies from low to high or continuous and 

the duration of each demand may vary from short to long 
period. So, the same equation can usually not be applied to all 
systems [13]. With the Markov method several authors have 
shown the best suited for analyzing safety systems. By using 
this method, it is possible to model different states with 
different failure modes of the components, different points in 
time, periods and test strategies. Therefore the authors in [10], 
[13] have used the Markov model to illustrate the borderline 
between low-demand and high-demand systems in a better 
way. The whole calculations of PFD and PFH are dependent 
on the demand rate and the demand duration. Based on this 
result and availability theory, a STR-, PFS- and MTTFSpurious 
calculation of the 1oo1- and 1oo2-architecture will be 
presented in low- and high-demand in this article. 

IV. MODELLING OF 1OO1-ARCHITECTURE 

If the system fails because of a spurious trip failure, the 
system will be in de-energized state. This means that the 
system is not available anymore. The characteristics of 1oo1-
architecture will be presented in Fig. 2. The EUC enters a safe 
state without demand, when a safe failure respectively spurious 
trip failure occurs in the SIS. 

 

A. Block diagram 

A block diagram of a SIS with 1oo1-architecture is 
illustrated in Fig. 3 with three elements: input, logic and 
output: 

A SIS with 1oo1-architecture fails spurious, when a safe 
failure in SIS or a false demand arises. Therefore, the spurious 
trip rate consists of not only the rate of safe failures λS but also 
of the demand rate λDE. Let the factor 0 < γ < 1 be the ratio of 
false demand to total demand of SIS in a considered time 
interval, the calculation of spurious trip rate for 1oo1 
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Fig. 3. Block diagram of 1oo1-architecture 
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Fig. 2. EUC and SIS of 1oo1-architecture 
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architecture is described in the following way: 
 

DESooSTR λγλ ⋅+=11
 (4) 

 
PFSavg_1oo1 can be calculated by using simplified equation: 
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for 1oo1-architecture the reliability is estimated as follows: 
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Derived from equations (4), (5) and (6) the formula of 

PFSavg for 1oo1-architecture is described as: 
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MTTFSpurious_1oo1 can be calculated by: 
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B. Markov model 

By the use of simplified equations the effect of demand rate 
and demand duration cannot be shown precisely. For this 
reason Markov model will be used. It is better to model 
different states with different failure mode of the components. 
Fig. 4 presents 8 states of the Markov model of a 1oo1-
architecture. State Z0 represents the failure free state and the 
system is operating correctly. From this state, seven other 
states can be reached: 

 --State Z1 presents the safe state (de-energized state) or 
spurious trip state. This state can be left with a transition rate 
µR = 1/τRepair, with τRepair which is the time the system requires 
for repair and startup. 

 --State Z2 has got a safe detected failure and will reach 
the safe state with the transition rate λDE when a demand 
occurs or with the transition rate µ0 = 1/τTest, with τTest which is 
the test time interval. 

 --State Z3 has got a safe undetected failure. With the 
transition rate µLT = 1/τLT (with τLT which is the lifetime) the 
system is able to reach the failure free state. And with the 
transition rate λDE the system can reach the safe state. 

 --State Z4 has got a dangerous detected failure. If a 
demand occurs, the system can reach the dangerous state Z6 
with the transition rate λDE. And with the transition rate µ0 = 
1/τTest the system can reach the safe state. 

 --State Z5 represents the dangerous undetected state. This 
state can change into state Z0 at the end of its lifetime and 
subsequently replaced or repaired with a transition rate µLT = 
1/τLT. If the system is at this state and a demand occurs, the 
system can reach the dangerous state Z6 with the transition 
rate λDE. 

 --State Z6 is the hazardous state, where the safety 
function fails and the system cannot reach the safe state. 

 --State Z7 presents the demand state, where the activation 
of the safety function is requested. 

 
The transition matrix is described in the following way: 
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with: 
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The steady-state equation corresponding to the Markov 

model in Fig. 4 can be obtained: 
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Fig. 4. Markov model of 1oo1-architecture 
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Solving this equation system results in: 
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The PFS1oo1 value is the sum of the probabilities P1 and 

γ⋅P7: 
 

7111 PPPFS oo ⋅+= γ  (22) 
 
The spurious trip rate of 1oo1-system will be given by the 

following equation: 
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And the Mean Time To Failure Spurious is calculated as 
follows: 
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V. MODELING OF 1OO2-ARCHITECTURE 

A safety system with 1oo2-architecture will bring EUC in 
de-energized state, if a safe failure or common cause failure 
respectively spurious trip failure occurs in the SIS. The 
characteristics of 1oo2-architecture are presented in Fig. 5, if 
random failure occurs and in Fig. 6, if common cause failure 
occurs. A random failure is a “failure, occurring at a random 
time, which results from one or more of the possible 
degradation mechanisms in the hardware” [1], [18]. And a 
common cause failure occurs, when a random failure leads to a 
failure of several components [1], [18]. 
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Fig. 5 EUC and SIS of 1oo2-architecture (random failure) [14] 
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Fig. 5 EUC and SIS of 1oo2-architecture (common cause failure) [14] 
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A. Block diagram 

A block diagram of a SIS with 1oo2-architecture is 
illustrated in Fig. 7 with two channel, which consist of three 
elements: input, logic and output. 

A SIS with 1oo2-architecture fails spurious, when one of the 
following cases in SIS arises: a safe failure or a dangerous 
detected failure or a common cause failure; or a false demand 
arises. Therefore, the spurious trip rate consists of not only the 
rate of safe failures λS, λDD but also of the demand rate λDE. 
Let the factor 0 < γ < 1 be the ratio of false demand to total 
demand of SIS in a considered time interval, the calculation of 
spurious trip rate for 1oo2 architecture is described in the 
following way: 
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PFSavg_1oo2 can be calculated by using simplified equation: 
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with the development of MacLaurin series: 
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The remaining term R4 converges for T = 0 to the value 0 

and can be neglected: 
 

0lim 4
0

=
→

R
T

 (29) 

 
Derived from equations (25), (26), (27), (28) and (29) the 

formula of PFSavg for 1oo2-architecture is described as: 
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MTTFSpurious_1oo2 can be calculated by: 
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B. Markov model 

Fig. 8 presents 22 states of the Markov model of a 1oo2-
architecture. State Z0 represents the failure free state and the 
system is operating correctly. From this state, 21 other states 
can be reached. 

 
The transition matrix is described in the following way: 
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Fig. 7 Block diagram of 1oo2-architecture 
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Fig. 8 Block diagram of 1oo2-architecture 
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The steady-state equation corresponding to the Markov 

model in Fig. 8 can be obtained: 
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Solving this equation system results in: 
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The PFS1oo2 value is the sum of the probabilities P1 and 

γ⋅(P18+P20+P21):  
 

)( 212018121 PPPPPFS oo +++= γ  (67) 

 
The spurious trip rate of 1oo2-system will be given by the 

following equation: 
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Let be γ = e-STR

1oo2
t, so the spurious trip rate of 1oo2-system 

will be given by the following equation: 
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There are two solutions for this equation, but only the 

positive value is accepted: 
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And the Mean Time To Failure Spurious is calculated as 

follows: 
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VI. EXAMPLE 

The following parameters will be used as an example for an 

estimation of the parameters of spurious trip failure: 
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A. 1oo1-architecture 

The following Figures (Fig. 9, Fig. 10 and Fig. 11) show the 
functions of PFS1oo1, STR1oo1 and MTTFSpurious_1oo1 in 
dependence on demand rate, which are deviated from Markov 
model in this work. At first, the effect of varying demand rate 
on the PFS1oo1 (Fig. 9) is examined. The PFS1oo1 function will 
increase, when the demand rate or demand duration increases. 
The PFS1oo1-value will reach STL 4 when the demand rate is 
low and reach STL 2 when demand rate is high. 

 
Fig. 10 describes the function of STR1oo1 which depends on 

the demand rate. Like the PFS1oo1 function, the STR1oo1 
function will decrease when the demand rate or demand 
duration decrease. With a low demand rate the function of 
STR1oo1 decreases slightly, but with a high demand rate the 
difference of STR1oo1 is shown explicitly. 

 

 
Fig. 9 PFS with different demand rate of 1oo1-architecture 
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The MTTFSpurious_1oo1 function is shown in the Fig. 11. 

While the PFS1oo1 function and the STR1oo1 function are 
proportional to demand rate and demand duration, the 
MTTFSpurious_1oo1 function is inversely proportional to the 
demand rate and demand duration. 

 
Fig. 12 shows the function of STR1oo1 in dependence on 

diagnostic coverage factor DC with different methods. The 
function of STR1oo1 by method of Machleidt & Litz [16] is like 
the function of STR1oo1 but using the reliability block diagram 
method, which is deviated from this work. STR1oo1 function by 
ANSI/ISA TR84.00.02-2002 [3] is another set of functions. 

 
 
 

 
 
 
 
 
 

B. 1oo2-architecture 

The effect of varying demand rate on the PFS1oo2 is 
displayed in Fig. 13. The PFS1oo2 function will increase, when 
the demand rate or demand duration increases. The PFS1oo2-
value will reach STL 4 when the demand rate and the demand 
duration are low , and reach the higher level when demand rate 
or demand duration is high. 

 
Fig. 14 describes the function of STR1oo2 which depends on 

the demand rate. Like the PFS1oo2 function, the STR1oo2 
function will decrease when the demand rate or demand 
duration decrease. With a low demand rate the function of 
STR1oo2 is strictly monotonically decreasing, but not strictly 
decreasing with a high demand rate, and the x-value of the 
saddle point is 1/8760 ≈ 1,14.10-4. 

 
 
 
 
 
 

 

 
Fig.10 STR with different demand rate of 1oo1-architecture 

 

 
Fig. 11 MTTFSpurious with different demand rate of 1oo1-architecture 

 

 
Fig. 12 STR with different methods of 1oo1-architecture 

 

 
Fig. 13 PFS with different rate of 1oo2-architecture 
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The MTTFSpurious_1oo2 function is shown in Fig. 15. 

MTTFSpurious_1oo2 value increases when the demand rate or 
demand duration decreases. The MTTFSpurious_1oo2 function is 
strictly monotonically increasing if the demand rate is low, 
but not strictly increasing if the demand rate is high. Like the 
PFS1oo2 -, STR1oo2 -curve the x-value of the saddle point of 
the MTTFSpurious_1oo2 curve is 1,14.10-4. 

 
Fig. 16 and Fig. 17 show the function of STR1oo2 in 

dependence on diagnostic coverage factor DC with different 
methods, with Fig. 17 is the enlargement of Fig. 16. The 
function of STR1oo2 utilising the method of Machleidt & Litz 
[16] is like the functions of STR1oo2 using the reliability block 
diagram method, which is different to this work. STR1oo2 
function using the Markov model, which is different from this 
work, is over another function. 

 
 
 
 
 

 

 

VII. CONCLUSION 

This article has analyzed the relationship between SIS 
reliability and demand rate, as well as the demand duration for 
1oo1- and 1oo2-architecture. Finally, the Markov model 
provides advanced method to analyse this relationship than the 
block diagram. Therefore, it can be stated that it is not always 
possible to use a common formula of reliability calculation for 
all system modes. PFS values of a system architecture are not 
equal to all modes of operation. The same is true for STR and 
MTTFSpurious. This is based on the recent revision of 
IEC 61508. 
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